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Outline 

• Direct dynamics and RRKM modeling of: 
– 1,5-dinitrobiuret (DNB) pyrolysis. 
– EMIM+dca-, EMMIM+dca- 

• IL vapor studies: 
– Photoionization of vaporized ILs. 

• IL aerosols + HNO3: 
– Diffusion-limited reactivity: MM 

• QM/MM reactive scattering: 
– hyperthermal O(3P) off IL surface 
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What is 
hypergolicity??! 



J. Phys. Chem. A, 2008, 112 (34), pp 7816–7824 
DOI: 10.1021/jp8038175 
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Motivation 
• Replacement for monomethylhydrazine (MMH) + N2O4 (highly 

volatile and toxic!!) 

– Improved performance. 
– Environmentally “greener” 

• Room temperature ionic liquids (RTILs) have: 
– Extremely low vapor pressures, thus low vapor toxicity. 
– High energy density. 
– Low flammability. 

• Ignition involves: 
– Pre-ignition chemistry- “chemical spark” 
– Rapid heating: vaporization and thermal decomposition. 
– Combustion. 

• How to predict hypergolicity? 
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Ionic Liquids 

• Molten salts with m.p. ≤100 °C. 
• Asymmetric ions with diffuse charge 

distributions. 
• C+A- : 1018 possible combinations of cations 

and anions. 
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Background 

• Dicyanamide-based RTILs first hypergolic 
ILs discovered with HNO3. 
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Gas Phase Decomposition of DNB 

Geith, J., Holl, G., Klapötke, T. M., Weigland, J. J., Combust. Flame, 2004, 139, 358-366 
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Temp / K 750 1000 1250 1500 1750 2000 

density of states (1/cm-1) 

DNB 1.95 × 1018 2.34 × 1022 5.98 × 1025 4.94 × 1028 1.71 × 1031 2.92 × 1033 

twisted DNB 1.90 × 1018 2.33 × 1022 6.04 × 1025 5.04 × 1028 1.75 × 1031 3.02 × 1033 

unimolecular rates (s-1 ) a 

k1   0 
(0) 

0.6 

(3.6) 
1.8 × 104 

(1.8 × 105) 
2.1 × 106 

(2.7 × 107) 
3.9 × 107 

(5.8 × 108) 
2.9 × 108 

(4.7 × 109) 

k2  8.5 9.7 × 105 7.9 × 107 1.0 × 109 5.5 × 109 1.8 × 1010 

k31 3.4 × 109 1.5 × 1010 3.5 × 1010 6.0 × 1010 8.8 × 1010 1.2 × 1011 

k-31 2.4 × 1011 3.2 × 1011 3.8 × 1011 4.4 × 1011 4.8 × 1011 5.1 × 1011 

k32  0 1.5 × 10-2 2.1 × 104 7.9 × 106 2.9 × 108 3.4 × 109 

branching ratios (%) a 

path 1 0 0 0 
(0.3) 

0.2 
(2.6) 

0.7 
(9.1) 

1.3 
(18.0) 

path 2 100 100 100 
(99.7) 

99.0 
(96.7) 

94.3 
(86.3) 

83.3 
(69.2) 

path 3 0 0 0 0.8 
(0.8) 

5.0 
(4.5) 

15.4 
(12.8) 

 

RRKM Results 

() = loose transition state for path 1 12 
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IL Vaporization 

• Strasser, Armstong, indicate ion pairs by 
detection of intact cation:1 

– Ionic Liquid + ∆   C+A-(g)    

– C+A-(g) + hv  C+A + e-  C+ + A + e-  

• Kelkar and Maginn: ion pairs more 
energetically favorable than clusters of ion 
pairs and non-neutral clusters.2 
 1 J. Phys. Chem. A, 2007, 111, 3191-3195; PCCP, 2007, 9, 982-990. 

2 J. Phys. Chem. B, 2007, 111, 9424-9427. 
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IL vapor source 
reflectron MS 

7.4-15.0 eV photons, 0.025 eV resolution 

ALS: Chemical Dynamics Beamline 

aerosol 
reflectron MS 
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Experimental 
IL effusive source: 
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110 = ion pair - 67 

150 = ion pair – 27 (HCN) 

EMIM dcyn 
200 °C, 9.0 eV 
T(decomposition)=240 °C 

intact cation 

66 

111 
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EMIM+dca- MD results 

20 

MD reaction # of trajectories branching ratio (%)

C2 H+ xfer to dca (term) 16 25
C2H5 dissoc 11 17
NCN + CN 8 13
dca dissoc 4 6
NR 4 6
dca abstract H from CH3 --> Hdca (term) 3 5
C2 H+ <-> dca (central) 2 3
CH3 dissoc 2 3
Et: CH3CH2- + dca --> CH2CH2 + Hdca (term) 2 3
H2 elim from -CH3 2 3
NCN-CN elongation 2 3
-C2H5 + dca <--> -C2H4 + Hdca 1 2
C2H5 abstraction by dca (term) 1 2
C2H5 and dca dissoc 1 2
C4H xfer to N3 and elim HC4C5 1 2
CH3 abstraction by dca (central) 1 2
CH3 abstraction by dca (term) 1 2
Et: H2 + dca --> HCN + HNCN 1 2

total= 63
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PCM Model for ILs 
• Truhlar: SMD-GIL (generic ionic liquid)* 

– benchmark to experimental ∆Gsolv for ILs. 

21 *J. Phys. Chem. B 2012, 116, 9122−9129 
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Mass 150 
=(111-1) + 40 

+ HCN 
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addition-elimination mechanism 
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EMMIM dcyn 
200 °C, 9.0 eV 
T(decomposition)=320 °C 66 

125 

intact cation 

149 
no HCN detected! 
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hv = 7.5 eV 
160 °C 

- 

+ 

+ 

26 

18 

'1 6 

14 

- 12 
1CU 10 -_::::::-.. a 
en 
~ 6 
Q> -~ 4 

:5 2 

0 

12 

10 

- 8 ::I 

10 - 6 >-.t:: 
(/j 
c 4 Q) -c 
c 2 0 

0 +-~~~~~~~~¢-~~~ 
132 136 140 144 

m/z 

m/2:. 

18 

16 
14 

-:- 12 
::I 

~ 10 -.~ 8 
~ 6 
Q) 

c 4 
g 2 

200 250 300 

0 +-~-T~~T-~~~~~~~ 
224 229 234 

m/z Distribution A: Approved for public release; distribution unlimited.



Distribution A:  Approved for public release; distribution unlimited 

IP = 6.6 ± 0.5 eV 

IP (M06/6-31+G(d,p)) 
7.3 ± 0.2 eV 

photoionization efficiency of ion pair 

+ 

J. Phys. Chem. Lett., 3, 2910 (2012) 
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Aerosol reactivity 

• RTILs very low vapor: 
– Aerosols are liquid droplets suspended in gas 

phase. 
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Monitoring isolated ion pairs 
• Use it to study reaction kinetics of 

‘hypergolic ionic liquid reaction with an 
oxidizer’ 

+ hυ 

Hypergolic  
Ionic liquid aerosol 

HOT 

+ − 
+ − 

+ − 
+ − + − 

+ − 

Hypergolic  
Ionic liquid aerosol ‘reacted’ 

Reaction dynamics 
and kinetics 

C. J. Koh, et al., Soft ionization of 
thermally evaporated hypergolic 
ionic liquid aerosols , J. Phys. 
Chem. 115, 4630 (2011). 29 



Ionic liquid aerosol generation 

- + - + 
- - + + + - 

+ 

+ - + 

- + 

Heater tip 

hν 

Hypergolic Ionic liquid aerosol 

• size distribution 

• Tunable light source 
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Experimental setup 

Aerosol source 
(Ionic liquid) 

N2 IL (aq) 

SMPS 

TOF-AMS 

Flow Tube 
(Reaction, IL+HNO3) 

N2 

Nitric acid 
Bubbler 

Nitric acid  
denuder 

Na2CO3 pellets 

Orifice 

Aerosol 
inlet 

Aerodynamic  
lens 

Copper block 

Detection 

Nitric acid  
Abs. cell 
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Identification of reaction products 

• photoionization efficiency curve measured 

isocyanourea  
melamine 

CO2 and N2O  cyanoamine 
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1200- --Reaction with heavy HN03 
-- Ionic liquid only 

. C0
2 

and N 20 

800- 1 
HN03 

15NNO 

Cyanoamide 

400-

I . I I 

40 44 48 

Mass (amu/a) 

Distribution A: Approved for public release; distribution unlimited.



Distribution A:  Approved for public release; distribution unlimited Distribution A:  Approved for public release; distribution unlimited 

aerosol kinetics data 

CO2 

15NNO 



MD simulations of IL/oxidizer interphases: liquid-liquid  
t=0 

HNO3 

t=6ns 

in liquid/liquid systems, mixing is rapid! 
 

BMIM/DCA HNO3 
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BMIM 

For the liquid-liquid 
interphase intermixing 
occurs fast (few ns time scale 
for investigated dimensions). HNO3 
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t=0 

HNO3 BMIM/DCA HNO3 

t=6ns 

MD simulations of IL/oxidizer interphases: liquid-gas  
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BMIM 

HNO3 

At the liquid-gas interphase 
HNO3 quickly adsorbs to the 
surface and then slowly 
diffuses to the bulk. 
 
There is a certain 
concentration of HNO3 at 
the surface that system 
would like to maintain to 
reduce the surface tension  
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Conclusions 

• Molecular dynamics can greatly improve our 
understanding of reactivity of ionic liquids: 
– ID thermal decomposition mechanisms 
– surface tension/diffusion limited processes 

• Tunable VUV-PI-TOFMS a powerful experimental tool: 
– Direct detection of ion pairs upon vaporization 
– ID products my mass and  ionization potential 
– Aerosols make ionic liquids more accessible by MS 

• Design a better green rocket fuel with ionic liquids !!!  
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Questions?! 
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